Preview

Антибиотики и Химиотерапия

Расширенный поиск

Полисахариды морских водорослей - перспективные средства патогенетической терапии инфекционной диареи

https://doi.org/10.37489/0235-2990-2020-65-7-8-42-51

Аннотация

В обзоре с современных позиций рассмотрены вопросы патогенеза и терапевтические мишени при инфекционной диарее, развивающейся в результате воздействия вирусов или бактериальных токсинов на энтероциты. Охарактеризованы основные методы лечения инфекционной диареи и недостатки стандартной терапии. Представлены современные сведения о биологической активности (бактерицидные/бактериостатические, антивирусные, антибиоплёночные, противовоспалительные, иммуномодулирующие и антиоксидантные свойства) полисахаридов морских водорослей. Оценены возможности использования полисахаридов морских водорослей в качестве основы лекарственных препаратов, БАД к пище и продуктов функционального питания для профилактики и терапии инфекционной диареи.

Об авторах

Н. Н. Беседнова
Научно-исследовательский институт эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Беседнова Наталия Николаевна - д. м. н., профессор, академик РАН, главный научный сотрудник лаб. иммунологии

Владивосток



Т. А. Кузнецова
Научно-исследовательский институт эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Кузнецова Татьяна Алексеевна - д. м. н., главный научный сотрудник лаб. иммунологии

Сельская, 1, Владивосток, 690087



Т. С. Запорожец
Научно-исследовательский институт эпидемиологии и микробиологии им. Г. П. Сомова
Россия

Запорожец Татьяна Станиславовна - д. м. н., главный научный сотрудник лаб. иммунологии

Владивосток



С. П. Крыжановский
Медицинское объединение ДВО РАН
Россия

Крыжановский Сергей Петрович - д. м. н., проректор по медицинским вопросам

Владивосток



Л. Г. Гусева
Медицинское объединение ДВО РАН
Россия

Гусева Людмила Григорьевна - главный врач

Владивосток



Т. Н. Звягинцева
Тихоокеанский институт биоорганической химии им. Г. Б. Елякова ДВО РАН
Россия

Звягинцева Татьяна Николаевна - д. х. н., профессор, главный научный сотрудник лаб. химии ферментов

Владивосток



Список литературы

1. Diarrhoeal disease. WorLd HeaLth Organization. Fact sheet No 330. 2013. URL: http://www.who.int/mediacentre/factsheets/fs330/en/

2. Vos T., Barber R.M., BeLL B. et al. Global, regional, and nationaL incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386 (9995): 743–800.

3. Liu Y., Liu W., Wang Y. et al. Inhibitory effect of depolymerized sulfated galactans from marine red algae on the growth and adhesion of diarrhheagenic Escherichia coli. Mar Drugs 2019; 17 (12): 694.

4. ВОЗ. Инфекционный бюллетень. 02.05.2017.

5. Федеральная служба государственной статистики. Заболеваемость населения отдельными инфекционными заболеваниями в 2016 году (данные Роспотребнадзора). URL: b17_01/IssWWW.exe/Stg/d01/3-3.doc

6. Naghavi M., Wang H., Lozano R. et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385 (9963): 117–171.

7. Ющук Н.Д. Острая диарея у взрослых: актуальность, проблемы и новые возможности терапии. Инф. болезни: новости, мнения, обучение. — 2017. — № 4. — С. 99–107.

8. Farthing M.J. Diarrhoea: a significant worldwide problem. Int J Antimicrob Agents 2000; 14 (1): 65–69.

9. Guarino A., Ashkenazi S., Gendrel D. et al. Turopean society for pediatric gastroenterology, hepatology and nutrition / European Society for Pediatric Infectious Diseases evidence-based guidelines for the Management of acute Gastroenteritis in children in Europe: update 2014. JPGN 2014; 59: 132–152.

10. Schiller L.R., Pardi D.S., Spiller R. 2013 APDW/WCOG Shanghai working party report: chronic diarrhea: definition, classification, diagnosis. J Gastroenterol Hepatol 2014; 29 (1): 6–25.

11. Белоусова Е.А., Никитина Н.В. Диарея: правильный алгоритм дей- ствий врача. Мед совет. — 2017. — № 15. — С. 130–139.

12. Белоусова Е.А., Златкина А.Р. Синдром диареи в практике гастроэнтеролога: патофизиология и дифференцированный подход к лечению. Фарматека. — 2003. — № 10. — С. 65–71.

13. Dubreuil D.J. The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol 2012; 14: 71-82.

14. Краснова У.И., Хохлова Н.И., Проворова В.В., Кузнецова В.Г. Острые кишечные инфекции у детей и возможности терапии с применением метабиотиков. Лечащий врач. — 2017. — № 2. — С. 73.

15. Navaneethan U., Gianella R.A. Mechanisms of infectious diarrhea. Nature Clinical Practice Gastroenterology and Hepatology 2008; 5 (11): 637–647.

16. Glass R.I., Parashar U., Patel M. et al. The control of rotavirus gastroenteritis in the United States. Trans Am Clin Climatol Assoc 2012; 123: 36–53.

17. Lanata C.F., Fisher-Walker C.L., Olascoaga A.C. et al. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 2013; 8 (9): e72788.

18. Руженцова Т.А., Плоскирева А.А., Горелов А.В. Острая диарея бактериальной этиологии. Мед. совет. — 2016. — № 7. — С. 78–81.

19. Holdt S.L., Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011; 23 (3): 543–597.

20. Шуляк Б.Ф. Энтерогеморрагические штаммы E.coli (обзор). Альманах клин. мед. — 2011. — № 25. — С. 72–76.

21. Liu B., Liu Q-M., Li G-L. et al. The anti-diarrhea activity of red algae originated sulfated polysaccharides on ETEC K-88 infected mice. RSC Adv 2019; 9: 2360–2370.

22. Maciel S., Chaves L. S., Bws S. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydr Polym 2008; 71: 559–565.

23. Alsaedi F., Vaz D.P., Stones D.H., Krachler A.M. 3-Sulfogalactosyldependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity. J Biol Chem 2017; 292: 19792–19803.

24. Liu Q.M., Xu S. S., Li L. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr Polym 2017; 165: 189–196.

25. Hwang P-A., Hung Y-L., Lin Y-C et al. The in vitro effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology 2016; 68 (4): 1349–1359.

26. Palanisami S., Vinosha M., Rajasekar P. et al. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycistum. Int J of Biol Macromol 2019; 125 (15): 485–495.

27. Gut A.M., Vasiljevic T., Yeager T., Donkor O.N. Salmonella infectionprevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology 2018; 164: 1327–1344.

28. Chua E.G., Ferbrugghe P., Perkins T.T., Tay C.Y. Fucoidans disrupt adherence of H.pylori to AGS cells in vitro. Evid Based Complement Alternat Med 2015; 2015: 120981.

29. Krachler A.M., Ham H., Orth K. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by gram-negative pathogens. Proc Natl Acаd Sci USA 2011; 108 (28): 11614–11629.

30. De Jesus Raposo M.F., de Morais A.M.M.B., de Morais R.M.S.C. Bioactivity and Applications of polysaccharides from marine microalgae. In: Merillon J.-M., Ramawat K.G., editors. Polysaccharides: Bioactivity and Biotechnology. Springer; Cham, Switzerland: 2014.

31. Vjasyabaskar P., Vaseela N., Thirumaran G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chinese J Nat Med 2012; 10 (6): 421–428.

32. Jun J-Y., Jung M-J., Jeong I-H. et al. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs 2018; 16 (9): 301.

33. Parks Q.M., Young R.L., Poch K.R. et al. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 2009; 58 (Pt4): 492–502.

34. Beloin C., Roux A., Ghigo J.-M. Escherichia coli biofilms. Curr. Top. Microbiol. Immunol 2008; 322: 249–289.

35. O’Gara J.P. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007; 270: 179–188.

36. Solano C., Garcia B., Valle J. et al. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 2002; 43: 793–808.

37. Vishwakarma J., Vavilala S.L. Evaluating the antibacterial and antibiofilm potential of sulfated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J Appl Microbiol 2019; 127 (4): 1004–1017.

38. Busetti A., Shaw G., Megaw J., Gorman S.P., Maggs C.A., and Gilmore B.F. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa. Mar Drugs 2014; 13: 1–28.

39. Гюлазян Н.М., Белая О.Ф., Малов В.А., Пак С.Г. Токсины А и В C. difficile глазами клинициста. Эпидемиология и инфекционные болезни. — 2013. — № 6. — С. 42–48.

40. Powell N., Jung S., Krishnan B. Clostridium difficile infection and inflammatory bowel disease: a marker for disease extent? Gut 2008; 57: 1183–1184.

41. Just I., Wilm M., Selzer J. et al. The enterotoxin from Clostridium difficile (ToxA). Lancet 1995; 357: 1777–1789.

42. Barreto A.R., Cavalcante I.C., Castro M.V. et al. Fucoidin prevents Clostridium difficile toxin-A-induced ileal enteritis in mice. Dig Dis Sci 2008; 53: 990-996.

43. Parkin J., Cohen B. An overview of the immune system monoglucosylates the Rho proteins. J Biol Chem 2001; 270: 13932–13936.

44. Leуdido A.C.M., Costa L.E.C., Araъjo, T.S.L., Costa, D.S., Sousa N.A., Souza L.K.M., Sousa F.B.M., Filho M.D.S., Vasconcelos D.F.P., Silva F.R.P. Anti-diarrhoeal therapeutic potential and safety assessment of sulphated polysaccharide fraction from Gracilaria intermedia seaweed in mice. Int J Biol Macromol 2017; 97: 34–45.

45. Sousa N.A.; Barros F.C.N.; Araъjo T.S.L. et al. The efficacy of a sulphated polysaccharide fraction from Hypnea musciformis against diarrhea in rodents. Int J Biol Macromol 2016; 86: 865–875.

46. Bezerra F.F., Lima G.C., de Sousa W.M. et al. Antidiarrheal activity of a novel sulfated polysaccharide from the red seaweed Gracillaria cervicornis. J Ethnopharmacol 2018; 224: 27–35.

47. Costa D.S., Araujo T.S., Sousa N.A. et al. Sulfated polysaccharide isolated from the seaweed Gracillaria caudate exerts an antidiarrhoeal effect in rodents. Basic Clin Pharmacol Toхicol 2016; 118 (6): 440–448.

48. Kreisl W.C., Liow J.S., Kimura N., Seneca N. et al. P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11 C-N-desmethyl-loperamide. J Nucl Med 2010; 51 (4): 559–566.

49. Fitton J.H. Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 2011; 9 (10): 1731–1760.

50. Araъjo I.W.F., Chaves H.V., Pachкco J.M. et al. Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria Filiformis in induced temporomandibular joint pain. Int Immunopharmacol 2017; 44: 160–167.

51. Agуcs M.M. WHO global rotavirus surveillance network: a strategic review of the first5 years, 2008–2012. Morb Mortal Wkly Rep 2014; 63 (29): 634–637.

52. Ahmed S.M. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 2014; 14 (8): 725–730.

53. Witvrouw M., De Clercq E. Sulfated polysaccharides extracted from sea algal as potential antiviral drugs. Gen Pharmacol 1997; 29 (4): 497–511.

54. Damonte E.B., Matulewiez M.C., Cerezo A.S. Sulfated seaweed polysaccharides as antiviral agents. Curt Med Chemi 2004; 11 (18): 2399–2419.

55. Anderson S.N., Schaller J.P., Mazer T.B., Kirchner S.J. Method for inhibition of rotavirus infection with carrageenan. Patent US 5658893. 19.08.1997.

56. Wang S., Wang W., Hao C., Yu Y. Antiviral activity against enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr Polym 2018; 200: 43–53.

57. Maruyama H., Tanaka M., Inoue M., Hashimoto M. The suppressive effect of Mekabu fucoidan on an attachment of Cryptosporidium parvum oocysts to the intestinal epithelial cells in neonatal mice. Life Sciences 2007; 80 (8): 775–781.

58. Mmbaga B.T., Houpt E.R. Cryptosporidium and Giardia infections in children: a review. Pediatr Clin Am 2017; 64: 837-850.

59. Bessoff K., Sateriale A., Lee K.K., Huston C.D. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth. Antimicrob Agents Chemother 2013; 57: 1804-1814.

60. Chavez M.A., White A.C.J. Novel treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti-Infect Ther 2018; 16 (8): 655–661.

61. Deville C., Gharbi M., Dandrifosse G., Peulen O. Study on the effects of laminarin a polysaccharide from seaweed, on gut characteristics. J Sci Food Agricult 2007; 87 (9): 1717–1725.

62. Струсовская О.Г., Буюклинская О.В. Возможности использования ламинарина в медицине. Экология человека. — 2009. — № 11. — С. 33–36.

63. Солодкий В.А., Павлов А.Ю., Клименко К.А. и др. Способ лечения хронических воспалительных заболеваний толстого кишечника. Патент RU2431489С1. Дата публикации 20.10.2011.

64. Esiringy F., Tugcu-Demiroz F., Acarturk F. et al. Investigation of the effect of intracolonic melatonin gel formulation on acetic acid-induced colitis. Drug Deliv 2016; 23 (7): 2318–2326.

65. Gibson G.R., Hutkins R., Sanders M.E. et al. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement in the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14 (8): 491–502.

66. Sghir A., Gramet G., Suan A. et al. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 2000; 66: 2263–2266.

67. Chen X., Sun Y., Hu L. et al. In vitro prebiotic effects of seaweed polysaccharides. J of Oceanology and Limnology 2018; 36: 926–932.

68. Han R., Pang D., Wen L. et al. In vitro digestibility and prebiotic activities of a sulfated polysaccharide from Gracillaria lemaneiformis. J Funct Foods 2020; 64: 103652.

69. Berri M., Collen P.N. Green algal sulfated polysaccharides: a natural alternative to antibiotics via modulation of the intestinal immune response. 2 Int. Symposium on Alternatives to Antibiotics (ATA) 2016. Paris. France.

70. Tyagi S., Gupta P., Saini A.S. et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2 (4): 236–240.

71. Xu X.R., Carrim N., Ni H. et al. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and antithrombotic therapies. Thromb J 2016; 14 (Suppl.1): 29.

72. Patel S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. Biotech 2012; 2 (3): 171–185.

73. Jin W., Zhang W., Liang H. et al. The structure-activity relationship between algae polysaccharides and anti-complement activity. Mar Drugs 2016; 14 (1): 3.

74. Barbosa J. da Silva, Costa M.S.S.P., RochaH.A.O. et al. In vitro immunostimulating activity of sulfated polysaccharides from Caulerpa cupressoides var. Flabellata. Mar Drugs 2019; 17 (2): 105.

75. Manlusok J.K.T., Hsieh C-L., Hsieh C-Y. et al. Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers (Basel) 2019; 11 (7): 1163.

76. Park H.Y., Park H.M., Han M.H. et al. Anti-inflammatory effects of fucoidan through inhibition of NF-kB, MAPK and Act activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem Toxicol 2011; 49 (8): 1745–1752.

77. Wu G-J., Shiu S-M., Tsai G-J. et al. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocol 2016; 53: 16–23.

78. Sanjeeva K.K., Fernando I.P., Kim E.A. et al. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW264.7 cells. Nutr Res Pract 2017; 11 (1): 3–10.

79. Saraswati, Girivono P.E., Andarwulan N. et al. Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: a review. Mar Drugs 2019; 17 (10): 590.

80. Matsumoto S., Nagaoka M., Hara T. et al. Fucoidan derived from Cladosiphon ocamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells. Clin Exp Immunol 2004; 163 (3): 432–439.

81. Копачевская К.А., Молочный В.П. Состояние бактерицидной функции нейтрофильных лейкоцитов при острых кишечных инфекциях у детей. Дальневосточный мед журн. — 2015. — № 2. — С. 144–149.

82. Ajisaka K., Yokoyama T., Matsuo K. Structural characteristics and antioxidant activities of fucoidans from five brown seaweeds. J. of Applied Glycoscience 2016; 63 (2): 31–37.

83. Presa F.B., Marques M.L.M., Rocha H.A.O. The protective role of sulfated polysaccharides from green seaweed Udotea flabellum in cells exposed to oxidative damage. Mar Drugs 2018; 16 (4): 135.

84. Walsh A.M., Sweeney T., O’Shea C.J. et al. Effect of supplementing dietary laminarin and fucoidan on intestinal morphology and the immune gene expression in the weaned pig. J Anim Sci 2013; 90 (Suppl 4): 284–286.

85. Corino C., Modina S.C., Giancamillo A.D. et al. Seaweeds in pig nutrition. Animals 2019; 9: 1126.


Рецензия

Для цитирования:


Беседнова Н.Н., Кузнецова Т.А., Запорожец Т.С., Крыжановский С.П., Гусева Л.Г., Звягинцева Т.Н. Полисахариды морских водорослей - перспективные средства патогенетической терапии инфекционной диареи. Антибиотики и Химиотерапия. 2020;65(7-8):42-51. https://doi.org/10.37489/0235-2990-2020-65-7-8-42-51

For citation:


Besednova N.N., Kuznetsova T.A., Zaporozhets T.S., Kryzhanovsky S.P., Gusevа L.G., Zvyagintseva T.N. Marine Algae Polysaccharides - a Promising Means of Pathogenetic Therapy of Infectious Diarrhea. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(7-8):42-51. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-7-8-42-51

Просмотров: 741


ISSN 0235-2990 (Print)