Preview

Антибиотики и Химиотерапия

Расширенный поиск

Ототоксичность аминогликозидов современные представления

https://doi.org/10.37489/0235-2990-2022-67-11-12-79-90

Аннотация

Аминогликозиды являются антибактериальными средствами широкого спектра действия и используются при лечении инфекций мочевыводящих путей, туберкулёза, висцерального лейшманиоза, сепсиса у новорождённых и муковисцидоза. Однако применение аминогликозидов ограничено в связи с их ототоксичностью — риском развития серьёзных нежелательных реакций, в частности стойкой необратимой потери слуха и вестибулярных нарушений, связанных с гибелью волосковых клеток во внутреннем ухе. В обзоре проанализированы научные данные о возможных механизмах повреждающего действия аминогликозидов на волосковые клетки внутреннего уха. Описаны генетически обусловленные причины, способствующие проявлению ототоксических свойств препаратов этой группы. Обоснована необходимость проведения генетического скрининга на носительство мутаций m.1555A>G и m.1494C>T в гене MT-RNR1 митохондриальной ДНК для минимизации риска развития нарушений со стороны органа слуха у пациентов, имеющих наследственную предрасположенность. Понимание механизмов ототокcичности аминогликозидов позволит найти пути для профилактики и коррекции потери слуха после их применения.

Об авторах

Е. В. Шубникова
Научный центр экспертизы средств медицинского применения МЗ РФ
Россия

Шубникова Елена Владимировна — кандидат медицинских наук, ведущий  эксперт Управления экспертизы безопасности лекарственных средств.

Петровский б-р, д. 8, стр. 2, НЦЭСМП, Москва, 127051

Researcher ID: B-6727-2018.

Scopus  Author  ID: 35622241800


Конфликт интересов:

Нет



Н. Ю. Вельц
Научный центр экспертизы средств медицинского применения МЗ РФ
Россия

Вельц Наталья Юрьевна — кандидат биологических наук, доцент, заместитель начальника Управления экспертизы безопасности лекарственных средств  по  МИБП.

Петровский б-р, д. 8, стр. 2, НЦЭСМП, Москва, 127051

Researcher ID: B-4870-2018

AuthorID: 179432


Конфликт интересов:

Нет



Список литературы

1. Ganesan P., Schmiedge J., Manchaiah V., Swapna S., Dhandayutham S., Kothandaraman P. Ototoxicity: A Challenge in Diagnosis and Treatment. Journal of Audiology and Otology. 2018; 22 (2): 59–68. doi: 10.7874/jao.2017.00360.

2. Arslan E., Orzan E., Santarelli R. Global Problem of Drug-Induced Hearing Loss. Ann N Y Acad Sci. 1999; 884 (1): 1–14. doi: 10.1111/j.1749-6632.1999.tb00277.x.

3. Lanvers-Kaminsky C., Ciarimboli G. Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics. 2017; 18 (18): 1683–1695. doi: 10.2217/pgs-2017-0125.

4. Cianfrone G., Pentangelo D., Cianfrone F. et al. Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: a reasoned and updated guide. Eur Rev Med Pharmacol Sci. 2011; 15 (6): 601–636.

5. Grohskopf L., Huskins W., Sinkowitz-Cochran R., Levine G., Goldmann D., Jarvis W. Use of Antimicrobial Agents in United States Neonatal and Pediatric Intensive Care Patients. Pediatr Infect Dis J. 2005; 24 (9): 766–773. doi: 10.1097/01.inf.0000178064.55193.1c.

6. Van Boeckel T., Gandra S., Ashok A. et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014; 14 (8): 742–750. doi: 10.1016/s1473-3099(14)70780-7.

7. Musiime G., Seale A., Moxon S., Lawn J. Risk of gentamicin toxicity in neonates treated for possible severe bacterial infection in low- and middle-income countries: Systematic Review. Trop Med Int Health. 2015; 20 (12): 1593–1606. doi: 10.1111/tmi.12608.

8. Petersen L., Rogers C. Aminoglycoside-induced hearing deficits — a review of cochlear ototoxicity. South African Family Practice. 2015; 57 (2): 77–82. doi: https://doi.org/10.1080/20786190.2014.1002220.

9. Audiologic Management of Individuals Receiving Cochleotoxic Drug Therapy. Asha.org. https://www.asha.org/policy/GL1994-00003/. Published 2022. Accessed June 20, 2022.

10. Tambs K. Moderate Effects of Hearing Loss on Mental Health and Subjective Well-Being: Results From the Nord-Trøndelag Hearing Loss Study. Psychosom Med. 2004; 66 (5): 776–782. doi: 10.1097/01.psy.0000133328.03596.fb

11. Naramura H., Nakanishi N., Tatara K., Ishiyama M., Shiraishi H., Yamamoto A. Physical and Mental Correlates of Hearing Impairment in the Elderly in Japan. Int J Audiol. 1999; 38 (1): 24–29. doi: 10.3109/00206099909072999.

12. Daniels P., Mallams A., Weinstein J., Wright J., Milne G. Mass spectral studies on aminocyclitol–aminoglycoside antibiotics. J Chem Soc, Perkin Trans 1. 1976; 10: 1078–1088. doi: 10.1039/p19760001078.

13. Krause K., Serio A., Kane T., Connolly L. Aminoglycosides: An Overview. Cold Spring Harb Perspect Med. 2016; 6 (6): a027029. doi: 10.1101/cshperspect.a027029.

14. Chittapragada M., Roberts S., Ham Y. Aminoglycosides: Molecular Insights on the Recognition of RNA and Aminoglycoside Mimics. Perspect Medicin Chem. 2009; 3: PMC.S2381. doi: 10.4137/pmc.s2381.

15. Решедько Г.К. Значение ферментативной модификации аминогликозидов в развитии резистентности у бактерий. Клиническая микробиология и антимикробная химиотерапия. 1999; 1 (1): 40–50.

16. Aggen J., Armstrong E., Goldblum A. et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother. 2010; 54 (11): 4636–4642. doi: 10.1128/aac.00572-10.

17. Landman D., Kelly P., Backer M. et al. Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J Antimicrob Chemother. 2010; 66 (2): 332–334. doi: 10.1093/jac/dkq459.

18. Karlowsky J., Draghi D., Jones M., Thornsberry C., Friedland I., Sahm D. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother. 2003; 47 (5): 1681–1688. doi: 10.1128/aac.47.5.1681-1688.2003.

19. Ikaheimo I. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J Antimicrob Chemother. 2000; 46 (2): 287–290. doi: 10.1093/jac/46.2.287.

20. Ho Y. In-vitro activities of aminoglycoside-aminocyclitols against mycobacteria. J Antimicrob Chemother. 1997; 40 (1): 27–32. doi: 10.1093/jac/40.1.27.

21. Ramirez M., Tolmasky M. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010; 13 (6): 151–171. doi: 10.1016/j.drup.2010.08.003.

22. Ряпис Л.А.,Илюхин В.И.,Сенина Т.В.,Шубникова Е.В.,Будченко А.А., Куликова А.С. Сравнительная характеристика бурхольдерий группы pseudomallei. Журнал микробиологии, эпидемиологии и иммунобиологии. 2013; 1: 3–8.

23. Brooke J. Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen. Clin Microbiol Rev. 2012; 25 (1): 2–41. doi: 10.1128/cmr.00019-11.

24. Avent M., Rogers B., Cheng A., Paterson D. Current use of aminoglycosides: indications, pharmacokinetics and monitoring for toxicity. Intern Med J. 2011; 41 (6): 441–449. doi: 10.1111/j.1445-5994.2011.02452.x.

25. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell. 4th edn. Annals of Botany. 2003; 91 (3): 401. doi: 10.1093/aob/mcg023.

26. Kotra L., Haddad J., Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000; 44 (12): 3249–3256. doi: 10.1128/aac.44.12.3249-3256.2000.

27. Fourmy D., Recht M., Blanchard S., Puglisi J. Structure of the a site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996; 274 (5291): 1367–1371. doi: 10.1126/science.274.5291.1367.

28. Turnidge J. Pharmacodynamics and dosing of aminoglycosides. Infect Dis Clin North Am. 2003; 17 (3): 503–528. doi: 10.1016/s0891-5520(03)00057-6.

29. Childs-Kean L., Shaeer K., Varghese Gupta S., Cho J. Aminoglycoside allergic reactions. Pharmacy. 2019; 7 (3): 124. doi: 10.3390/pharmacy7030124.

30. Dai C., Mangiardi D., Cotanche D., Steyger P. Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res. 2006; 213 (1–2): 64–78. doi: 10.1016/j.heares.2005.11.011.

31. Streetman D.,Nafziger A.,Destache C.,Bertino J. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy. 2001; 21 (4): 443–451. doi: 10.1592/phco.21.5.443.34490.

32. Choudhury D., Ahmed Z. Drug-induced nephrotoxicity. Med Clin North Am. 1997; 81 (3): 705–717. doi: 10.1016/s0025-7125(05)70541-1.

33. Hock R., Anderson R. Prevention of drug-induced nephrotoxicity in the intensive care unit. J Crit Care. 1995; 10 (1): 33–43. doi: 10.1016/0883-9441(95)90029-2.

34. Xie J., Talaska A., Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res. 2011; 281 (1–2): 28–37. doi: 10.1016/j.heares.2011.05.008.

35. Kitasato I., Yokota M., Inouye S., Igarashi M. Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. Chemotherapy. 1990; 36 (2): 155–168. doi: 10.1159/000238762.

36. Asha.org. https://www.asha.org/siteassets/uploadedFiles/EBSRAminoglycosides.pdf. Published 2022. Accessed June 20, 2022.

37. Wu W., Sha S., McLaren J., Kawamoto K., Raphael Y., Schacht J. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague– Dawley rat. Hear Res. 2001; 158 (1–2): 165–178. doi: 10.1016/s03785955(01)00303-3.

38. Huth M., Ricci A., Cheng A. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011; 2011: 1–19. doi: 10.1155/2011/937861.

39. Henley C., Schacht J. Pharmacokinetics of aminoglycoside antibiotics in blood, inner-ear fluids and tissues and their relationship to ototoxicity. Int J Audiol. 1988; 27 (3): 137–146. doi: 10.3109/00206098809081584.

40. Jiang M., Karasawa T.,Steyger P. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci. 2017; 11. doi: 10.3389/fncel.2017.00308.

41. Hashino E., Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res. 1995; 704 (1): 135–140. doi: 10.1016/0006-8993(95)01198-6.

42. Wang Q., Steyger P. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol. 2009; 10 (2): 205–219. doi: 10.1007/s10162-009-0160-4.

43. Fausti S., Henry J., Schaffer H., Olson D., Frey R., McDonald W. High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity. J Infect Dis. 1992; 165 (6): 1026–1032. doi: 10.1093/infdis/165.6.1026.

44. Chowdhury S., Owens K., Herr R. et al. Phenotypic optimization of urea– thiophene carboxamides to yield potent, well tolerated, and orally active protective agents against aminoglycoside-induced hearing loss. J Med Chem. 2017; 61 (1): 84–97. doi: 10.1021/acs.jmedchem.7b00932.

45. Wong A., Ryan A. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci. 2015; 7. doi: 10.3389/fnagi.2015.00058.

46. Monzack E., May L., Roy S., Gale J., Cunningham L. Live imaging the phagocytic activity of inner ear supporting cells in response to hair cell death. Cell Death Differ. 2015; 22 (12): 1995–2005. doi: 10.1038/cdd.2015.48.

47. Rubel E., Furrer S., Stone J. A brief history of hair cell regeneration research and speculations on the future. Hear Res. 2013; 297: 42–51. doi: 10.1016/j.heares.2012.12.014.

48. Alharazneh A., Luk L.,Huth M.et al. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One. 2011; 6 (7): e22347. doi: 10.1371/journal.pone.0022347.

49. Fettiplace R., Kim K. The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev. 2014; 94 (3): 951–986. doi: 10.1152/physrev.00038.2013.

50. Stepanyan R., Indzhykulian A., Vélez-Ortega A. et al. TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol. 2011; 12 (6): 729–740. doi: 10.1007/s10162-011-0288-x.

51. Karasawa T.,Wang Q., David L., Steyger P. Calreticulin binds to gentamicin and reduces drug-induced ototoxicity. Toxicol Sci. 2011; 124 (2): 378–387. doi: 10.1093/toxsci/kfr196.

52. O’Sullivan M., Perez A., Lin R., Sajjadi A., Ricci A., Cheng A. Towards the prevention of aminoglycoside-related hearing loss. Front Cell Neurosci. 2017; 11. doi: 10.3389/fncel.2017.00325.

53. Van Remmen H., Jones D. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci. 2009; 64 (2): 171–174. doi: 10.1093/gerona/gln058.

54. Gutteridge J., Halliwell B. Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci. 2006; 899 (1): 136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x.

55. Yamasoba T.,Nuttall A., Harris C., Raphael Y.,Miller J. Role of glutathione in protection against noise-induced hearing loss. Brain Res. 1998; 784 (1–2): 82–90. doi: 10.1016/s0006-8993(97)01156-6.

56. Zorov D., Juhaszova M., Sollott S. Mitochondrial reactive oxygen species (ROS) and ROS-Induced ROS Release. Physiol Rev. 2014; 94 (3): 909–950. doi: 10.1152/physrev.00026.2013.

57. Qian Y.,Guan M. Interaction of aminoglycosides with human mitochondrial 12S rRNA carrying the deafness-associated mutation. Antimicrob Agents Chemother. 2009; 53 (11): 4612–4618. doi: 10.1128/aac.00965-08.

58. Wu J., Ye J., Kong W., Zhang S., Zheng Y. Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2020; 53 (11): e12915. doi: 10.1111/cpr.12915.

59. Sha S., Schacht J. Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res. 1999; 128 (1–2): 112–118. doi: 10.1016/s0378-5955(98)00200-7.

60. Guan M. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion. 2011; 11 (2): 237–245. doi: 10.1016/j.mito.2010.10.006.

61. Fuchs Y., Steller H. Programmed cell death in animal development and disease. Cell. 2011; 147 (4): 742–758. doi: 10.1016/j.cell.2011.10.033.

62. Li J., Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008; 27 (48): 6194–6206. doi :10.1038/onc.2008.297.

63. Brenner D., Mak T. Mitochondrial cell death effectors. Curr Opin Cell Biol. 2009; 21 (6): 871–877. doi: 10.1016/j.ceb.2009.09.004.

64. Csordás G., Weaver D.,Hajnóczky G. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 2018; 28 (7): 523–540. doi: 10.1016/j.tcb.2018.02.009.

65. Adams J., Cory S. The Bcl-2 Protein family: arbiters of cell survival. Science. 1998; 281 (5381): 1322–1326. doi: 10.1126/science.281.5381.1322.

66. Fu X., Wan P., Li P. et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front Cell Neurosci. 2021; 15: 692762. doi: 10.3389/fncel.2021.692762.

67. Rybak L., Whitworth C. Ototoxicity: therapeutic opportunities. Drug Discov Today. 2005; 10 (19): 1313–1321. doi: 10.1016/s1359-6446(05)03552-x.

68. Wang J., Van De Water T., Bonny C., de Ribaupierre F., Puel J., Zine A. A peptide inhibitor of c-jun n-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003; 23 (24): 8596–8607. doi: 10.1523/jneurosci.23-24-08596.2003.

69. Karasawa T., Wang Q., David L., Steyger P. CLIMP-63 is a gentamicinbinding protein that is involved in drug-induced cytotoxicity. Cell Death Dis. 2010; 1 (11): e102–e102. doi: 10.1038/cddis.2010.80.

70. Okamoto K., Kashima K., Pereg Y. et al. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol Cell Biol. 2005; 25 (21): 9608–9620. doi: 10.1128/mcb.25.21.9608-9620.2005.

71. Karasawa T.,Wang Q., David L., Steyger P. Calreticulin binds to gentamicin and reduces drug-induced ototoxicity. Toxicol Sci. 2011; 124 (2): 378–387. doi: 10.1093/toxsci/kfr196.

72. Krause K., Michalak M. Calreticulin. Cell. 1997; 88 (4): 439–443. doi: 10.1016/s0092-8674(00)81884-x.

73. Esterberg R., Linbo T., Pickett S. et al. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest. 2016; 126 (9): 3556–3566. doi: 10.1172/jci84939.

74. Puel J. Chemical synaptic transmission in the cochlea. Prog Neurobiol. 1995; 47 (6): 449–476. doi: 10.1016/0301-0082(95)00028-3.

75. Hong S., Park S., Cho Y. et al. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig. Hear Res. 2006; 211 (1–2): 46–53. doi: 10.1016/j.heares.2005.08.009.

76. Xia Z., Dudek H., Miranti C., Greenberg M. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996; 16 (17): 5425–5436. doi: 10.1523/jneurosci.16-17-05425.

77. Pavlidis P., Maurer J., Apostolidou E., Kekes G., Kouvelas D. Memantine’s action against aminoglycoside-induced ototoxicity. Eur Arch Otorhinolaryngol. 2014; 271 (6): 1491–1496. doi: 10.1007/s00405-013-2647-1.

78. Momiyama J., Hashimoto T.,Matsubara A., Futai K., Namba A., Shinkawa H. Leupeptin, a calpain inhibitor, protects inner ear hair cells from aminoglycoside ototoxicity. Tohoku J Exp Med. 2006; 209 (2): 89–97. doi: 10.1620/tjem.209.89.

79. Wu P.,Wu X.,Zhang C.,Chen X.,Huang Y.,Li H. Hair cell protection from ototoxic drugs. Neural Plast. 2021; 2021: 1–9. doi: 10.1155/2021/4909237.

80. Caelers A., Radojevic V., Traenkle J., Brand Y., Bodmer D. Stress and survival pathways in the mammalian cochlea. Audiol Neurotol. 2010; 15 (5): 282–290. doi: 10.1159/000279760.

81. Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics. 2005; 6 (1): 27–36. doi: 10.1517/14622416.6.1.

82. Usami S.,Abe S.,Shinkawa H.,Kimberling W. Sensorineural hearing loss caused by mitochondrial dna mutations. J Commun Disord. 1998; 31 (5): 423–435. doi: 10.1016/s0021-9924(98)00014-8.

83. Usami S. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet. 2000; 37 (1): 38–40. doi: 10.1136/jmg.37.1.38.

84. Aminoglycosides (gentamicin, amikacin, tobramycin, and neomycin): increased risk of deafness in patients with mitochondrial mutations. GOV.UK. https://www.gov.uk/drug-safety-update/aminoglycosides-gentamicin-amikacin-tobramycin-and-neomycin-increased-risk-of-deafness-in-patients-with-mitochondrial-mutations. Published 2022. Accessed June 20, 2022.

85. Bitner-Glindzicz M.,Rahman S. Ototoxicity caused by aminoglycosides. BMJ. 2007; 335 (7624): 784–785. doi: 10.1136/bmj.39301.680266.ae.

86. Owens K., Santos F., Roberts B. et al. Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLoS Genet. 2008; 4 (2): e1000020. doi: 10.1371/journal.pgen.1000020.

87. Hu D.,Qui W.,Wu B. et al. Genetic aspects of antibiotic induced deafness: mitochondrial inheritance. J Med Genet. 1991; 28 (2): 79–83. doi: 10.1136/jmg.28.2.79.

88. Shohat M., Fischel-Ghodsian N., Legum C., Halpern G. Aminoglycoside-induced deafness associated with the mitochondrial DNA mutation A1555G. Am J Otolaryngol. 1999; 20 (1): 64–67. doi: 10.1016/s0196-0709(99)90054-6.

89. Yang L., Tan Z., Wang D. et al. Species identification through mitochondrial rRNA genetic analysis. Sci Rep. 2014; 4 (1). doi: 10.1038/srep04089.

90. Gao Z., Chen Y., Guan M. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol. 2017; 12 (1): 1–8. doi: 10.1016/j.joto.2017.02.001.

91. Payne B., Wilson I., Yu-Wai-Man P. et al. Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet. 2012; 22 (2): 384–390. doi: 10.1093/hmg/dds435.

92. Pandya A., Xia X., Erdenetungalag R. et al. Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet. 1999; 65 (6): 1803–1806. doi: 10.1086/302658.

93. Maeda Y., Sasaki A., Kasai S. et al. Prevalence of the mitochondrial 1555 A>G and 1494 C>T mutations in a community-dwelling population in Japan. Hum Genome Var. 2020; 7 (1): 27. doi: 10.1038/s41439-020-00115-9.

94. Kaheel H., Breß A., Hassan M. et al. Frequency of mitochondrial m.1555A >G mutation in Syrian patients with non-syndromic hearing impairment. BMC Ear Nose Throat Disord. 2018; 18 (1). doi: 10.1186/s12901-018-0055-2.

95. Igumnova V., Veidemane L., Vīksna A., Capligina V., Zole E., Ranka R. The prevalence of mitochondrial mutations associated with aminoglycoside-induced deafness in ethnic Latvian population: the appraisal of the evidence. J Hum Genet. 2018; 64 (3): 199–206. doi: 10.1038/s10038-018-0544-6.

96. Prezant T., Agapian J., Bohlman M. et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic–induced and non–syndromic deafness. Nat Genet. 1993; 4 (3): 289–294. doi: 10.1038/ng0793-289.

97. Postal M., Palodeto B., Sartorato E., de Oliveira C. C1494T mitochondrial dna mutation, hearing loss, and aminoglycosides antibiotics. Braz J Otorhinolaryngol. 2009; 75 (6): 884–887. doi: 10.1016/s1808-8694(15)30554-1.

98. Zhao L., Young W., Li R., Wang Q., Qian Y., Guan M. Clinical evaluation and sequence analysis of the complete mitochondrial genome of three Chinese patients with hearing impairment associated with the 12S rRNA T1095C mutation. Biochem Biophys Res Commun. 2004; 325 (4): 1503–1508. doi: 10.1016/j.bbrc.2004.10.199.

99. Hamasaki K., Rando R. Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry. 1997; 36 (40): 12323–12328. doi: 10.1021/bi970962r.

100. Tang H., Hutcheson E., Neill S., Drummond-Borg M., Speer M., Alford R. Genetic susceptibility to aminoglycoside ototoxicity: How many are at risk?. Genet Med. 2002; 4 (5): 336–345. doi: 10.1097/00125817-200209000-00004.

101. McDermott J., Wolf J., Hoshitsuki K. et al. Clinical pharmacogenetics implementation consortium guideline for the use of aminoglycosides based on MT‐RNR1 genotype. Clin Pharmacol Ther. 2021; 111 (2): 366–372. doi: 10.1002/cpt.2309.

102. Ema.europa.eu. https://www.ema.europa.eu/en/documents/psusa/tobramycin-systemic-use-cmdh-scientific-conclusions-grounds-variation-amendments-product-information/00009318/202009_en.pdf. Published 2022. Accessed June 20, 2022.

103. Государственный реестр лекарственных средств. Grls.rosminzdrav.ru. https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=a240a4dd-45c2-4f77-9765-4636d7826ecc&t=. Published 2022. Accessed June 20, 2022.


Рецензия

Для цитирования:


Шубникова Е.В., Вельц Н.Ю. Ототоксичность аминогликозидов современные представления. Антибиотики и Химиотерапия. 2022;67(11-12):79-90. https://doi.org/10.37489/0235-2990-2022-67-11-12-79-90

For citation:


Shubnikova E.V., Velts N.Yu. Ototoxicity of Aminoglycosides the Modern Concepts. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(11-12):79-90. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-11-12-79-90

Просмотров: 1201


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)